V 2.5

Revised 8/20

EZO-PMP

Embedded Dosing Pump

Flow rate

0.5ml to 105ml/min

Accuracy

+/- 1%

Viscocity

0.1-2,000 cP

Modes of operation

Continuous dispensing Volume dispensing Dose over time Constant flow rate Dispense at startup

Connector

5 lead data cable

Calibration

Single point

Tubing size

Any 5mm O.D. tubing

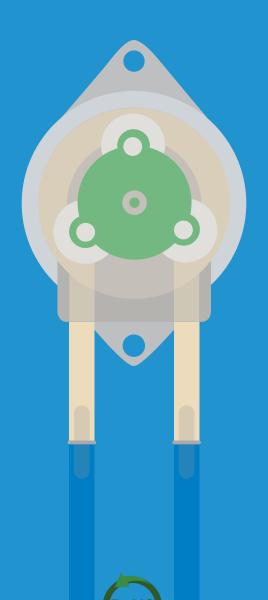
Data protocol

UART & I²C

Default I²C address

103 (0x67)

Operating voltage


3.3V-5V (logic) 12V-24V (motor)

Pump head

2 meters

Data format

ASCII

Table of contents

EZO-PMP™ dimensions	4	Calibration theory	11
Power consumption	4	Accuracy	13
EZO-PMP™ tubing	5	Viscosity	14
Operating principle	6	Default state	15
Operating modes	6	Available data protocols	16

UART

UART mode	18
Receiving data from device	19
Sending commands to device	20
LED color definition	21
UART quick command page	22
LED control	23
Find	24
Continuous mode	25
Single reading mode	26
Continuous dispensing	27
Volume dispensing	28
Dose over time	29
Constant flow rate	30
Dispense at startup	31
Pause dispensing	32
Stop dispensing	33
Total volume dispensed	34
Calibration	35
Enable/disable parameters	36
Pump voltage	37
Naming device	38
Device information	39
Response codes	40
Reading device status	41
Sleep mode/low power	42
Change baud rate	43
Protocol lock	44
Factory reset	45
Change to I ² C mode	46
Manual switching to I ² C	47

I ² C mode	49
Sending commands	50
Requesting data	51
Response codes	52
LED color definition	53
I ² C quick command page	54
LED control	55
Find	56
Single report mode	57
Continuous dispensing	58
Volume dispensing	59
Dose over time	60
Constant flow rate	61
Dispense at startup	62
Pause dispensing	63
Stop dispensing	64
Total volume dispensed	65
Calibration	66
Enable/disable parameters	67
Pump voltage	68
Device information	69
Reading device status	70
Sleep mode/low power	71
Protocol lock	72
I ² C address change	73
Factory reset	74
Change to UART mode	75
Manual switching to UART	76
Mounting the EZO-PMP™	77

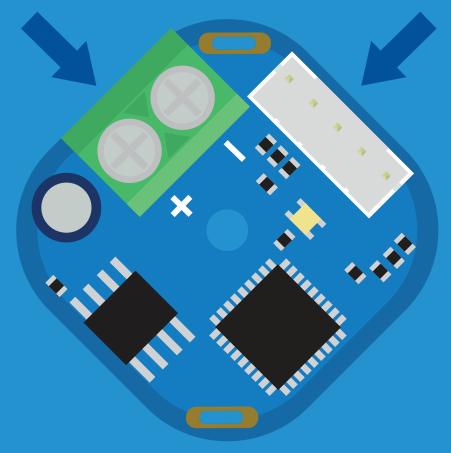
Datasheet change log

Warranty

78

80

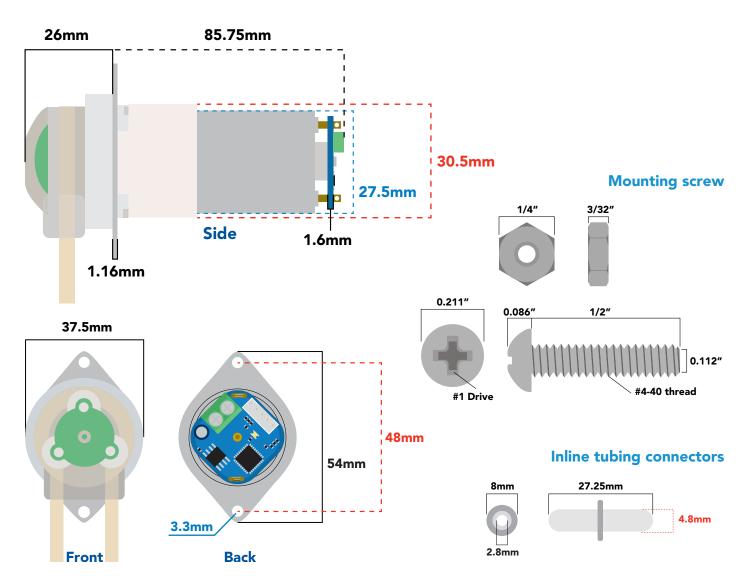
Attention


The EZO-PMP™ Embedded Dosing Pump requires two power supplies to operate.

to drive the motor

3.3V - 5.5V

for the control system



Control system

(Back side of dosing pump)

EZO-PMP[™] dimensions

	LED	MA	X	STAND	BY	SLEEP
5V	ON	13.7	mA	13.4 m	4	0.415 mA
	OFF	13.1	mA	12.8 m	Δ	
3.3V	ON	12.5	mA	12.4 m	4	0.13 mA
	OFF	12.3	mA	12.2 m/	Δ	
Motor	12V = ~400mA					
Tubing	Tubing life span		+1,0	00 hrs.		
Casset	Cassette life span		1,50	0 hrs.		

5,000 hrs.

Motor life span

Power consumption Absolute max ratings

Parameter	MIN	TYP	MAX
Storage temperature (EZO-PMP™)	-65 °C		125 °C
Operational temperature (EZO-PMP™)	-40 °C	25 °C	85 °C
VCC	3.3V	5V	5.5V
Motor	10.8V	12V	24V
Max input / output pressure			80 kPa

EZO-PMP[™] tubing

Tan tubing

Saint-Gobain™ PharMed™ BPT tubing

Length: 15.24cm Outer diameter: 5mm Inner diameter: 3mm

This tubing is highly chemically resistant and has 30X more resistant to mechanical wear then

silicone tubing.

Inline tubing connectors

HDPE

Length: 2.54cm

Outer diameter: 8mm

Inner diameter: 2.8mm

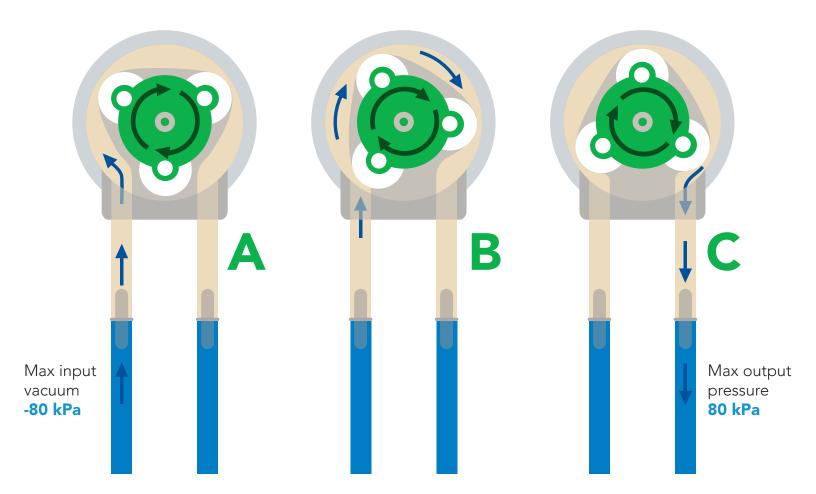
Food safe

Blue tubing

Silicone

Length: 2x 30.48cm Outer diameter: 5mm Inner diameter: 3mm Bend radius: 15mm

Temperature -67°C to 200°C Max pressure: 69 kPa (10 PSI)


Food safe **V**

Operating principle

- Self-priming
- ✓ Run dry

Operating modes

The EZO-PMP™ can operate in four different modes.

Continuous dispensing

Run the pump continuously 105 ml/min ∞ (with supplied tubing)

Volume dispensing

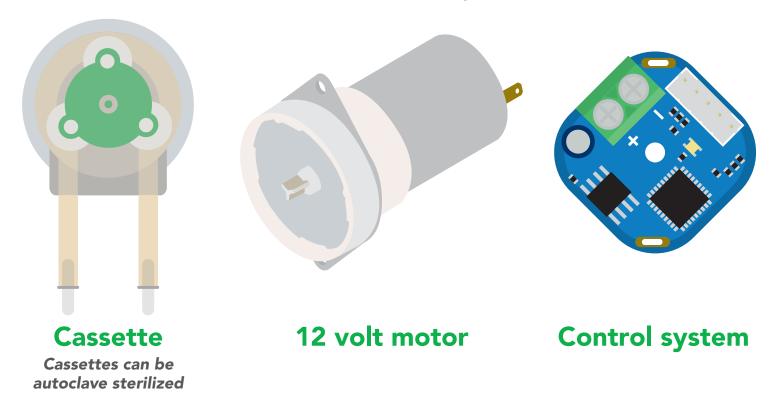
Pump a specific volume (Smallest possible volume is 0.5 ml)

Volume is always in ml.

Dose over time

Pump a specific volume over a set time

Constant flow rate


Pump a specific volume per minute

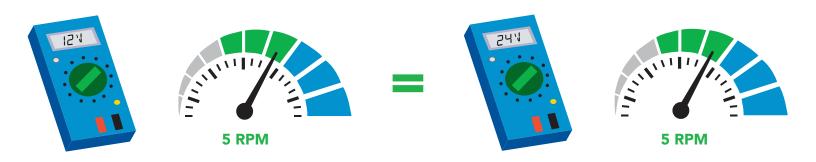
Dispense at startup

Dispense a specific volume at startup

The Atlas Scientific EZO-PMP™ consists of three main components.

The actual peristaltic pumping is done within the cassette. It has been designed to be easily detached from the motor and disassembled.

The 12 volt motor and control system have been soldered together. Both components are designed to operate as one single unit.

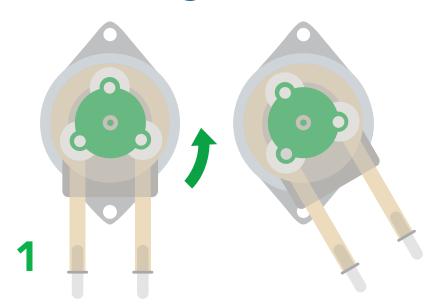

White - RX/SCL
Green - TX/SDA

Data and power cable pinout

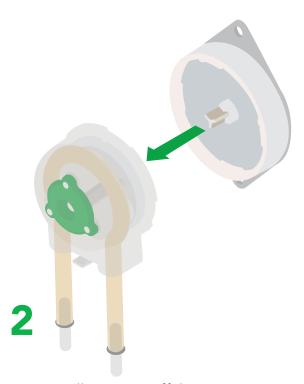
Black - GND
Red - VCC
Blue - INT

Pump speed vs. voltage

There is no change in pump speed at different voltages.

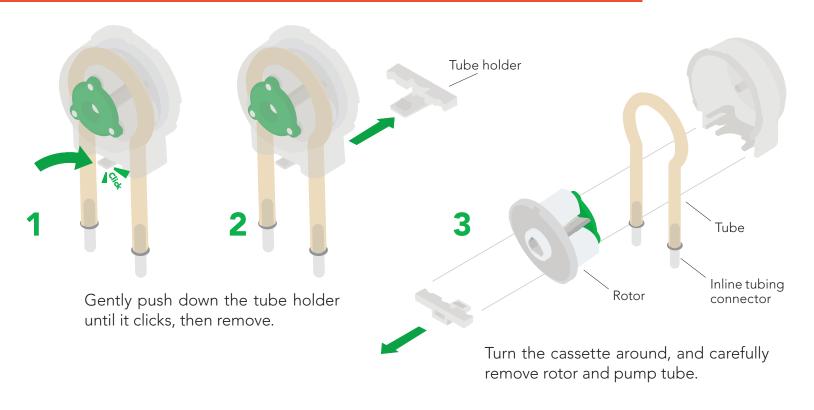


Interupt pin


When the pump is dispensing the interupt pin goes high.

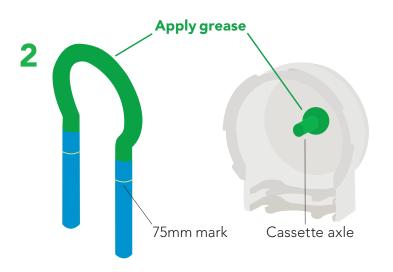
Removing cassette

Turn cassette counterclockwise until it stops.



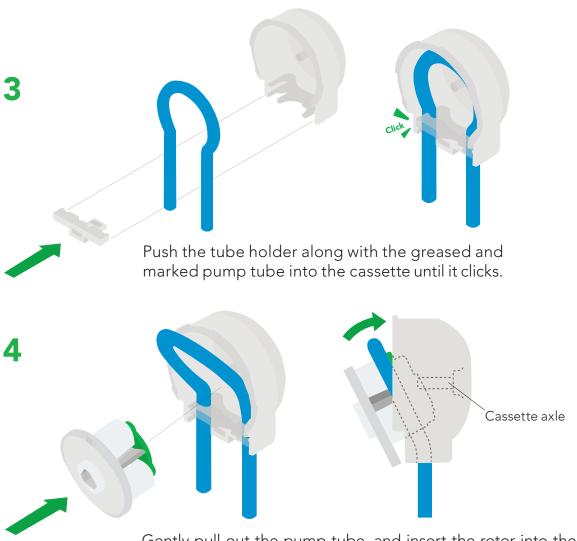
Pull cassette off the motor.

Removing tube assembly

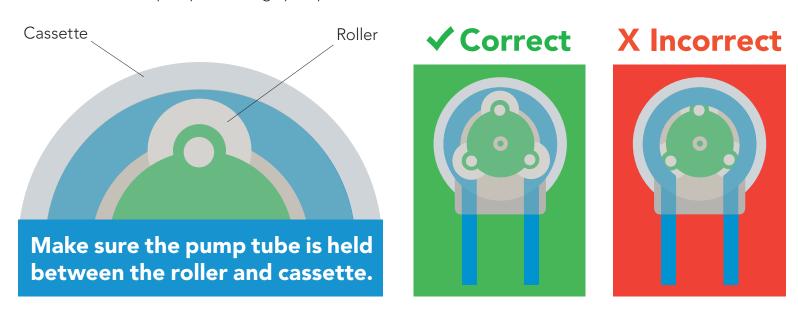

The inner workings of the cassette are fragile and must be dismantled by hand. Using tools can damage or break the cassette.

Installing new tube assembly

Measure 75mm of pump tubing, and mark both ends with a soft-tip pen or marker.

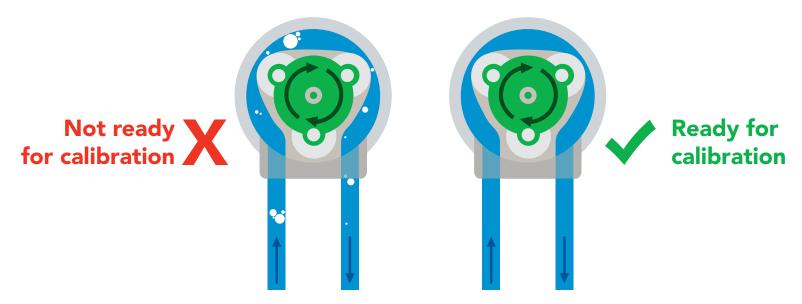


Apply silicone lubricating grease to the marked areas on both the tubing and cassette axle.


Do not operate this device without lubrication!

Atlas Scientific recommends using **Super Lube** silicone lubricating grease.

Gently pull out the pump tube, and insert the rotor into the pump tube. Align pump tube and rotor with the cassette axle.


Once the tubing has been replaced, run the pump for 3-5 minutes to break in the new tubing. Remember, this pump can be run dry and does not need to pump liquid for the 3-5 minute break in period.

Calibration theory

Uncalibrated accuracy +/- 5% Calibrated accuracy +/- 1%

Before calibration is attempted all the air bubbles should be removed from the tubing. This is done by running the pump while tapping the tubing. If air bubbles are not removed from the tubing they will slowly group together into larger air bubbles. Over time this will lead to accuracy issues.

Calibration types

Volume calibration Volume over time calibration

Calibration is optional. Both types of calibration are independent of each other and can be done at any time. Calibration can be done at any volume however; Atlas Scientific recommends using volumes above 5ml.

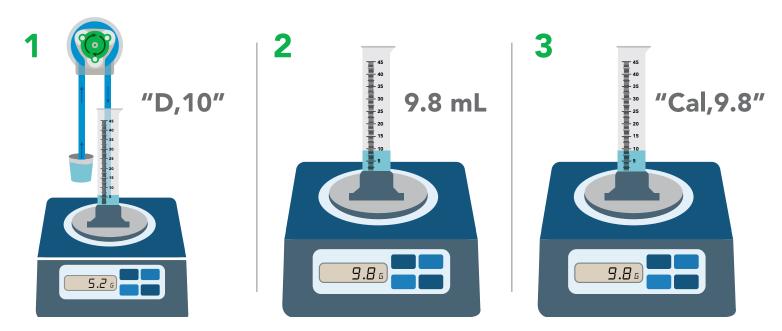
Equipment needed for calibration

An accurate graduated cylinder of at least 10ml.

1 gram of water = 1ml 23.56 grams of water = 23.56ml

An accurate scale with a resolution of at least 0.1 grams

Calibration procedure


Calibration should be done with water and not a chemical

Make sure the tubing is full of water and has no bubbles before calibrating.

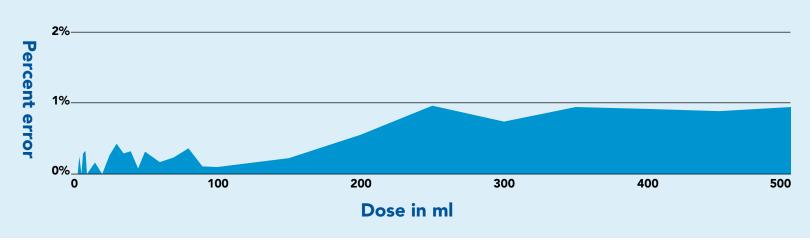
- 1. Instruct the pump to dispense a volume of water.
- 2. Measure the dispensed amount to determine how much water was actually dispensed.
- 3. Calibrate the pump by sending it the volume of liquid you have measured.

Example

Calibrate the pump by dispensing 10ml

- 1. Instruct the pump to dispense 10ml into a graduated cylinder or beaker on a scale.
- 2. Measure the amount of liquid that was actually dispensed.
- 3. Inform the pump how much liquid was actually dispensed.
- 4. Calibration is now complete.

Once the pump has been calibrated it will accurately dispense any volume of liquid. It has not been calibrated specifically to the volume used during the calibration procedure (10 ml). It has now been calibrated to all volumes.


Use the same procedure to perform a volume over time calibration.

Uncalibrated accuracy +/- 5% Calibrated accuracy +/- 1%

Volume dispensing mode

calibrated at 10ml

Dose over time mode

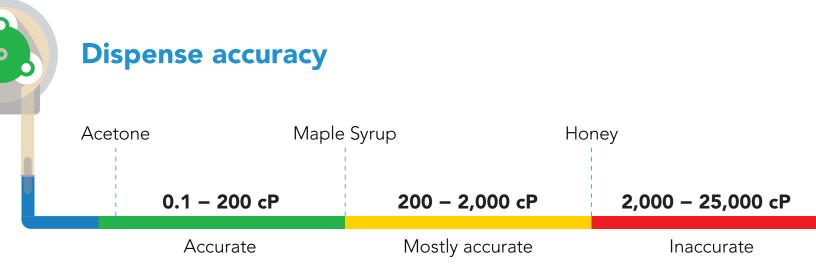
calibrated at 10ml over 90 seconds

Viscosity

The EZO-PMP™ is capable of pumping liquids within a viscosity range of 0.1 – 2,000 cP.

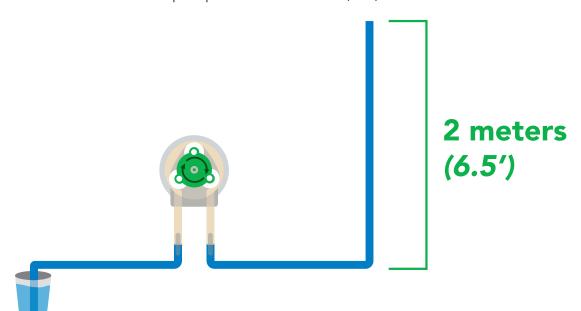
0.6 = Acetone

1 = Water


10 = Kerosene

100 = Corn Syrup

200 = Maple Syrup


2,000 = Honey

10,000 = Hershey Chocolate Syrup

Pump head

Pump head refers to the maximum vertical height a pump can dispense. The EZO-PMP $^{\text{TM}}$ has a pump head of 2 meters (6.5').

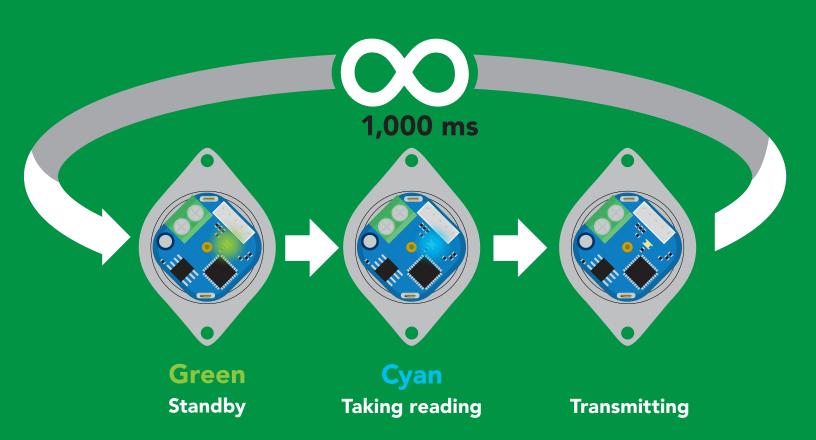
Default state

UART mode

Baud

Readings

Speed


LED

9,600

continuous

1 reading per second

on

Available data protocols

UART

Default

1²C

X Unavailable data protocols

SPI

Analog

RS-485

Mod Bus

4-20mA

UART mode

Settings that are retained if power is cut

Baud rate Calibration

Continuous mode

Device name

Enable/disable parameters

Enable/disable response codes

Hardware switch to I²C mode

LED control

Protocol lock

Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find Sleep mode

JART mode

8 data bits 1 stop bit

no parity no flow control

Baud 300

1,200

2,400

9,600 default

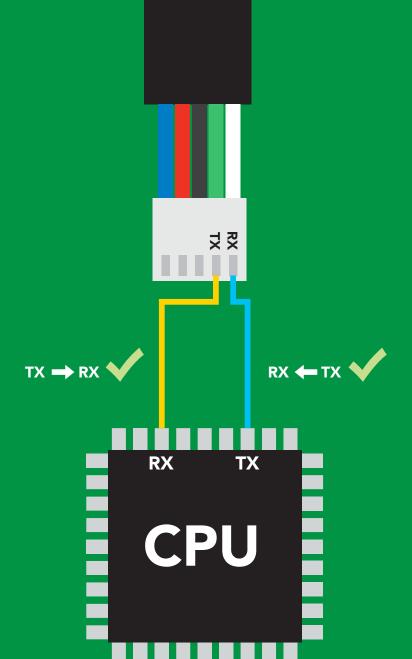
19,200

38,400

57,600

115,200

Data in


Data out

Vcc

3.3V - 5.5V

Data format

volume **Output**

Units ml

Encoding ASCII

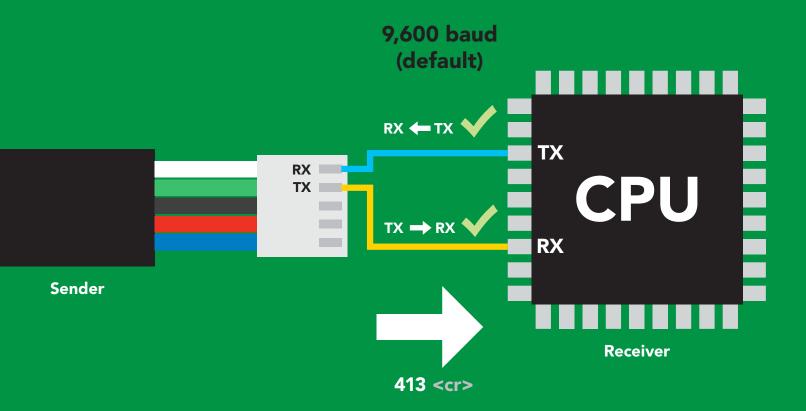
Format string **Terminator**

Data type

Decimal places 3

Smallest string 3 characters

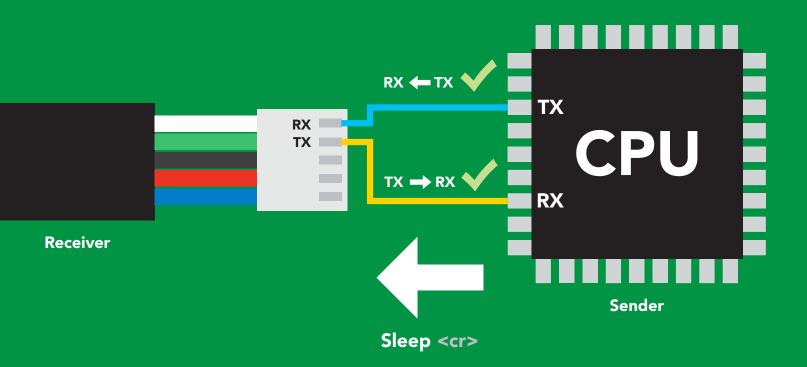
Largest string


carriage return floating point

39 characters

Receiving data from device

Advanced


ASCII: 4 1

34 31 33 Hex:

Dec: 52 49 51 13

Sending commands to device

Advanced

ASCII: s 53 6C 65 65 70 83 108 101 101 112 Dec:

LED color definition

LED ON **5V** +2.5 mA +1 mA

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	Default state
Baud	change baud rate	pg. 43 9,600
С	enable/disable continuous mode	pg. 25 enabled
Cal	performs calibration	pg. 35 n/a
D	dispense modes	pg. 27 – 31 n/a
Factory	enable factory reset	pg. 45 n/a
Find	finds device with blinking white LED	pg. 24 n/a
i	device information	pg. 39 n/a
I2C	change to I ² C mode	pg. 46 not set
L	enable/disable LED	pg. 23 enabled
Name	set/show name of device	pg. 38 not set
0	enable/disable parameters	pg. 36 all enabled
P	pause dispensing	pg. 32 n/a
Plock	enable/disable protocol lock	pg. 44 disabled
Pv	check pump voltage	pg. 37 n/a
R	returns a single reading	pg. 26 n/a
Sleep	enter sleep mode/low power	pg. 42 n/a
Status	retrieve status information	pg. 41 enable
Tv	total volume dispensed	pg. 34 n/a
x	stop dispensing	pg. 33 n/a
*OK	enable/disable response codes	pg. 40 enable

LED control

Command syntax

L,1 <cr> LED on default

L,0 <cr> LED off

L,? <cr> LED state on/off?

Example

Response

L,1 <cr>

*OK <cr>

L,0 <cr>

*OK <cr>

L,? <cr>

?L,1 <cr> or ?L,0 <cr>>

*OK <cr>>

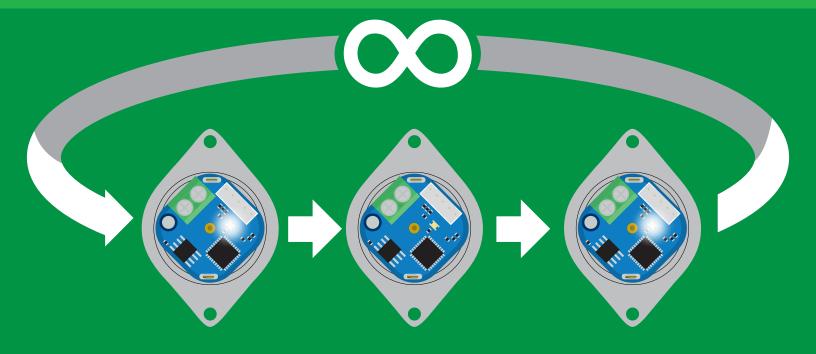
L,1

L,0

Find

Command syntax

This command will disable continuous mode Send any character or command to terminate find.


Find <cr> LED rapidly blinks white, used to help find device

Example

Response

Find <cr>

*OK <cr>

Continuous mode

Command syntax

C,* <cr> continuously reports volume once per second default

C,1 <cr> continuously reports volume only when pumping

C,0 <cr> disable continuous reporting

C,? <cr> continuous reporting mode on/off?

Example

Response

dispense 3ml

C,* <cr>

1.2 <cr>

3.0 < cr >

*Done, 3.00 < cr >

3.0 <cr>

3.0 < cr >

1.2 <cr>

3.0 <cr>

*Done, 3.00 < cr >

*Done,3.00 <cr>

?C,1 <cr> or ?C,0 <cr> or ?C,* <cr>

*OK <cr>

Single reading mode

Command syntax

R <cr> returns a single value showing dispensed volume

Example	Respons	se se
R <cr></cr>	2.50 <cr> *OK <cr></cr></cr>	(If issued half way through dispensing 5ml)
	5.00 <cr> *OK <cr></cr></cr>	(If issued once dispensing has stopped)

Continuous dispensing

Pump on/pump off

Command syntax

After running in continuous mode for 20 days the EZO-PMP™ will reset.

- <cr> dispense until the stop command is given
- <cr> dispense in reverse until the stop command is given
- D,? <cr> dispense status

Example	Respon	ise
D,* <cr></cr>	*OK <cr></cr>	pump will continuously run at ~105ml/min (with supplied tubing)
D,-* <cr></cr>	*OK <cr></cr>	pump will continuously run in reverse at ~105ml/min (with supplied tubing)
D,? <cr></cr>	?D,*,1 <cr *OK <cr></cr></cr 	·>

Response breakdown

Volume dispensing

Pump a specific volume

Command syntax

where [ml] is any volume in millimeters >= 0.5

D,[ml] <cr> dispense [this specific volume]

D,[-ml] <cr> dispense [in reverse this specific volume]

<cr> dispense status **D**,?

Example

Response

D,15 <cr>

*OK <cr> 15 ml will be dispensed

D,-405 <cr>

*OK <cr> 405 ml will be dispensed in reverse

D,? <cr>

?D,22.50,0 <cr>

*OK <cr>

Response breakdown

?D,22.50,0

last volume dispensed

pump off

Dose over time

Pump a fixed volume over a fixed time

Command syntax

D,[ml],[min] <cr> Dispense [this volume], [over this many minutes]

Example

Response

D,85,10 <cr>

*OK <cr> Dispense 85ml over 10 minutes

Constant flow rate

Maintain a constant flow rate

Command syntax

After running in continuous mode for 20 days the EZO-PMP™ will reset.

DC,[ml/min],[min or *] <cr> [maintain this rate],[for this much time] **DC,?** <cr> reports maximum possible flow rate

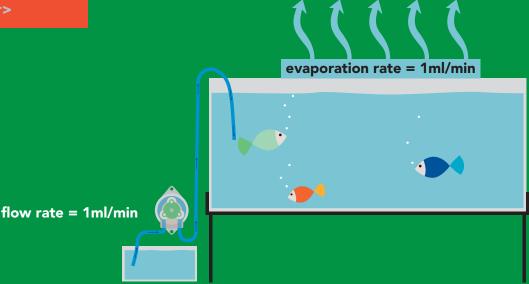
[ml/min] = a single number (int or float) representing the desired flow rate [min or *] = the number of minutes to run or (*) indefinitely A negative value for ml/min = reverse

Example

Response

DC,25,40 <cr>

***OK <cr> Dispense 25ml per minute for 40 minutes**


DC,? <cr>

?MAXRATE,58.5 <cr>

*OK <cr>

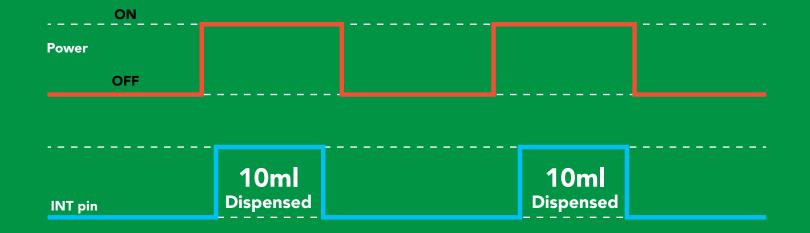
The maximum flow rate is determined after calibration. If the flowrate entered is too fast the EZO-PMP™ will send an error.

*TOOFAST <cr> *ER <cr>

Dispense at startup

Pump a specific volume at startup and then stop

Use this command to make a simple fixed-volume pump


Command syntax

<cr> dispense [this specific volume] at startup Dstart,[ml]

<cr> disables dispense at startup mode **Dstart,off**

Dstart,? <cr> startup dispense status

Example	Response
Dstart,10 <cr></cr>	*OK <cr></cr>
Dstart,off <cr></cr>	*OK <cr></cr>
Dstart,? <cr></cr>	?Dstart,10 <cr> or ?Dstart,0 <cr> *OK <cr></cr></cr></cr>

Pause dispensing

Command syntax

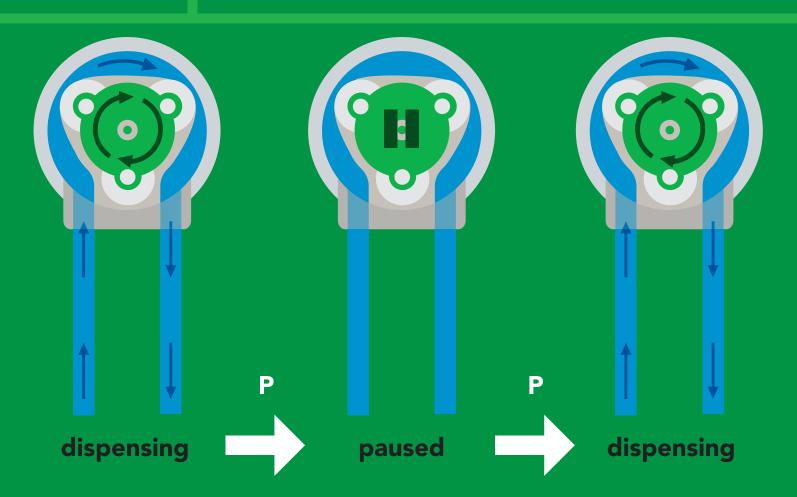
Issue the command again to resume dispensing

pauses the pump during dispensing P <cr>

pause status **P,?** <cr>

Example

Response


P <cr>

*OK <cr>

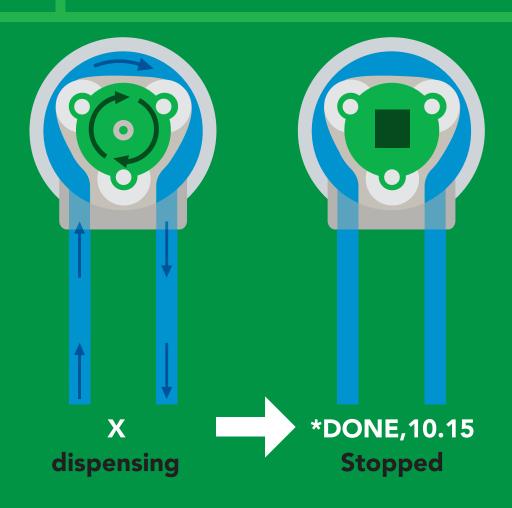
P,? <cr>

?P,1 <cr>or ?P,0 <cr>paused unpaused

*OK <cr>

Stop dispensing

Command syntax


X <cr> stop dispensing

Example

Response

X <cr>

*DONE,v <cr> v = volume dispensed

Total volume dispensed

Command syntax

TV,? <cr> shows total volume dispensed

ATV,? <cr> absolute value of the total volume dispensed

Clear <cr> clears the total dispensed volume

Example	Response
TV,? <cr></cr>	?TV,434.50 <cr></cr>
ATV,? <cr></cr>	?ATV,623.00 <cr></cr>
Clear <cr></cr>	*OK <cr> total now 0.00</cr>

Calibration

Command syntax

Calibrate to the actual volume dispensed.

Cal,v <cr> v = corrected volume

Cal, clear <cr> delete all calibration data

<cr> device calibrated? Cal,?

This command is used for both, single dose and dose over time calibrations.

Example

Response

Cal,24.01 <cr>

*OK <cr>

Cal, clear <cr>

*OK <cr>

Cal,? <cr>

Enable/disable parameters from output string

Command syntax

O, [parameter],[1,0] <cr> enable or disable output parameter <cr> enabled parameter? 0,?

Example	Response
O,V,1 <cr></cr>	*OK <cr> enable volume being pumped</cr>
O,TV,0 <cr></cr>	*OK <cr> disable total volume pumped</cr>
O,ATV,1 <cr></cr>	*OK <cr> enable absolute volume pumped</cr>
O,? <cr></cr>	?,O,V,TV,ATV <cr> if all three are enabled</cr>

Pump voltage

Command syntax

PV,? <cr> check pump voltage

Example

Response

PV,? <cr>

?PV,13.86 <cr> *OK <cr>>

Response breakdown

13.86 ?PV,

Pump input voltage

Naming device

Command syntax

Name,n <cr> set name

Name,? <cr> show name

n =

Up to 16 ASCII characters

Example

Name,zzt <cr>

Name,? <cr>

Response

*OK <cr>

?Name,zzt <cr>

*OK <cr>

Name,zzt

*OK <cr>

Name,?

Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

Exam	n	6
	יש	

Response

i <cr>

?i,PMP,1.1 <cr> *OK <cr>

Response breakdown

?i, PMP, Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

default

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

413 <cr>

*OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

413 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

*ER unknown command *OV over volt (VCC>=5.5V) under volt (VCC<=3.1V) *UV

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

*WA wake up

dispensing complete *DONE

dispense amount too low *MINVOL

ml/min set to fast *TOOFAST

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

Response

Sleep <cr>

*OK <cr>

*SL <cr>

Any command

*WA <cr> wakes up device

STANDBY SLEEP

13.4 mA 0.415 mA

3.3V

12.4 mA 0.13 mA

Standby 13.4 mA

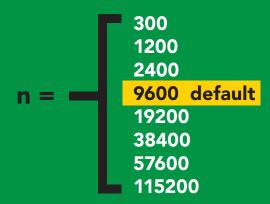
Sleep 0.415 mA

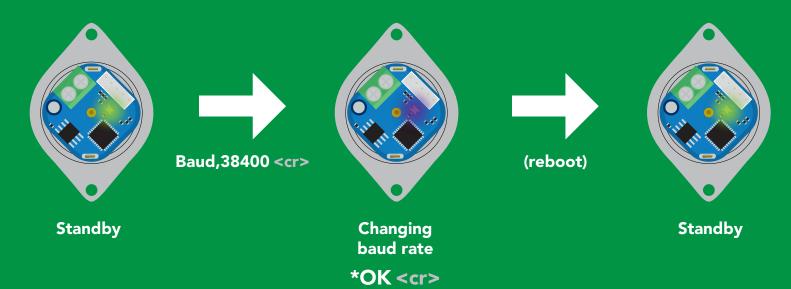
Change baud rate

Command syntax

Baud,n <cr> change baud rate

Example


Response


Baud,38400 <cr>

*OK <cr>

Baud,? <cr>

?Baud,38400 <cr> *OK <cr>

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> enable Plock

default Plock,0 <cr> disable Plock

Plock,? <cr> Plock on/off?

Example

Response

Plock,1 <cr>

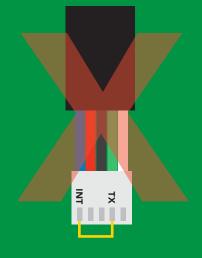
*OK <cr>

Plock,0 <cr>

*OK <cr>

Plock,? <cr>

?Plock,1 <<r> or ?Plock,0 <<r>>


Plock.1

I2C,100

cannot change to I²C *ER <cr>

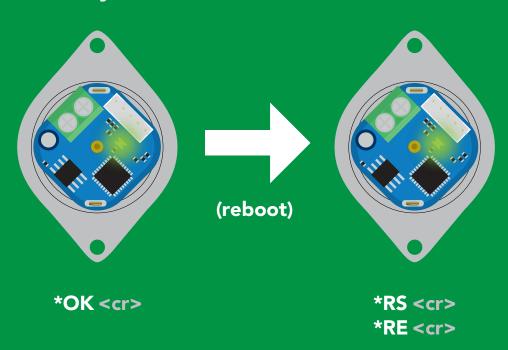
cannot change to I²C

Factory reset

Command syntax

Clears calibration LED on "*OK" enabled

Factory <cr> enable factory reset


Example

Response

Factory <cr>

*OK <cr>

Factory <cr>

Baud rate will not change

Change to I²C mode

Command syntax

Default I²C address 103 (0x67)

I2C,n <cr> sets I2C address and reboots into I2C mode

n = any number 1 - 127

Example

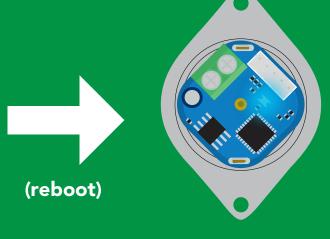
Response

12C,100 <cr>

*OK (reboot in I²C mode)

Wrong example

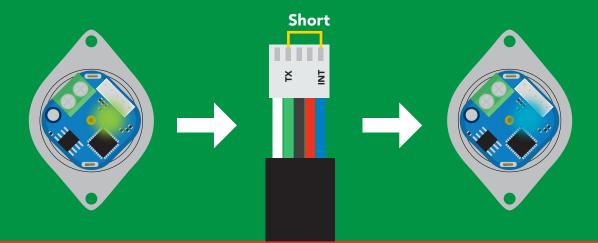
Response


12C,139 <cr> n ≯ 127

*ER <cr>

I2C,100

Green *OK <cr>


Blue now in I²C mode

Manual switching to I²C

- Make sure Plock is set to 0
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to INT
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 103 (0x67)

Example

Wrong Example Disconnect RX line -**Short**

12C mode

The I²C protocol is considerably more complex than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

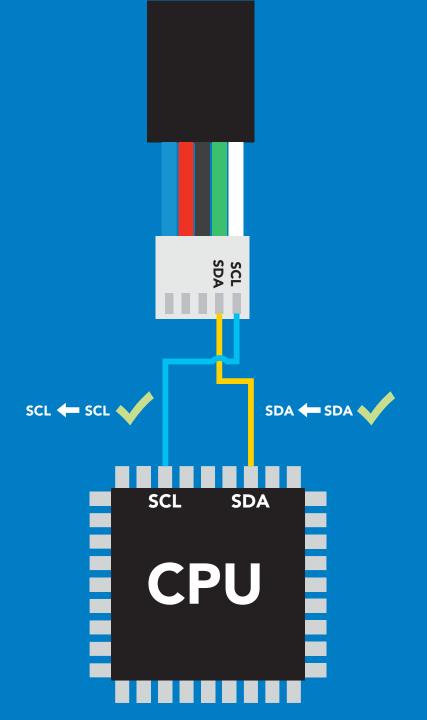
To set your EZO-PMP™ into I²C mode click here

Settings that are retained if power is cut

Calibration
Change I²C address
Enable/disable parameters
Hardware switch to UART mode
LED control
Protocol lock
Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode


I²C mode

I²C address (0x01 - 0x7F)

103 (0x67) default

3.3V - 5.5VVcc

Clock speed 100 - 400 kHz

Data format

volume Reading

Units ml

Encoding

ASCII

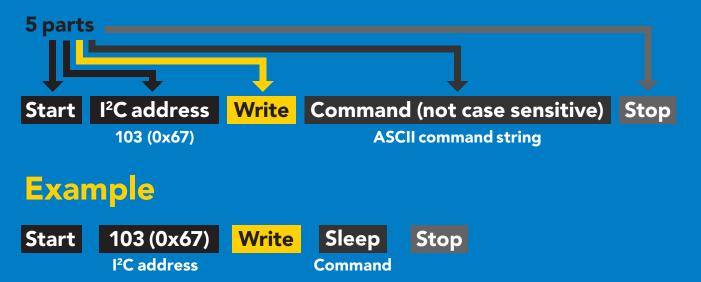
Format

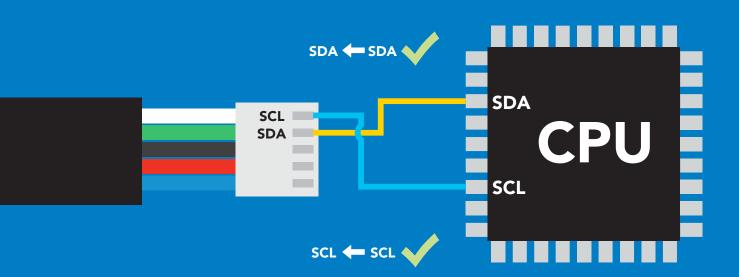
string

Data type

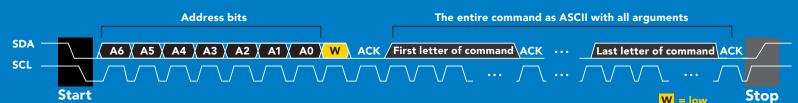
Decimal places 3

Largest string

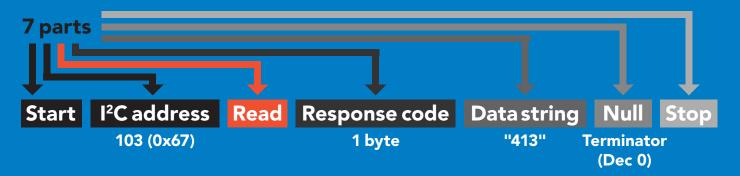

floating point

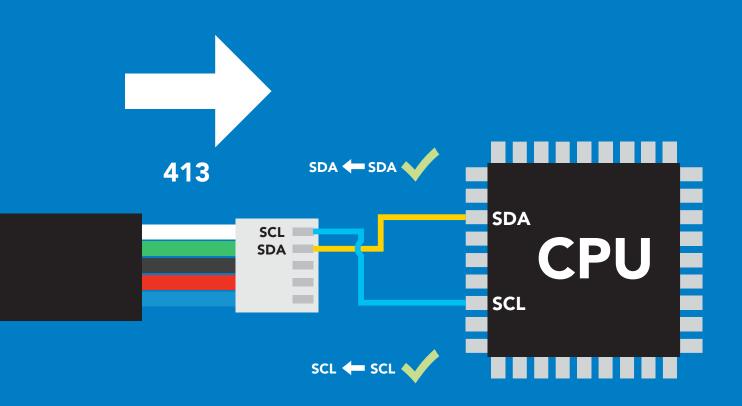

Smallest string 3 characters

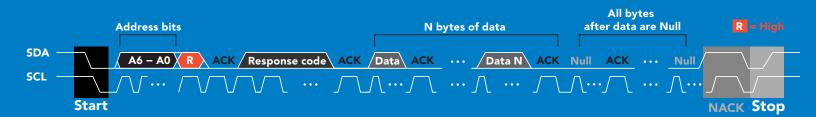
39 characters



Sending commands to device




Advanced



Requesting data from device

Advanced

Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start;

I2C address:

I2C_write(EZO_command);

I2C_stop;

delay(300);

I2C start; I2C address; Char[] = I2C_read; I2C_stop;

If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes

Single byte, not string

255 no data to send

254 still processing, not ready

2 syntax error

successful request

LED color definition

I²C standby

Green **Taking reading**

Changing I²C address

Command not understood

White Find

LED ON **5V** +2.5 mA +1 mA

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 75
Cal	performs calibration	pg. 66
D	dispense modes	pg. 58 – 62
Factory	enable factory reset	pg. 74
Find	finds device with blinking white LED	pg. 56
i	device information	pg. 69
I2C	change I ² C address	pg. 73
L	enable/disable LED	pg. 55
0	enable/disable parameters	pg. 67
Р	pauses the pump during dispensing	pg. 63
Plock	enable/disable protocol lock	pg. 72
Pv	check pump voltage	pg. 68
R	returns a single reading	pg. 57
Sleep	enter sleep mode/low power	pg. 71
Status	retrieve status information	pg. 70
Tv	total volume dispensed	pg. 65
X	stop dispensing	pg. 64

LED control

Command syntax

300ms processing delay

default LED on

L,0 **LED** off

LED state on/off? **L,?**

Example

Response

L,1

L,0

L,?



Find

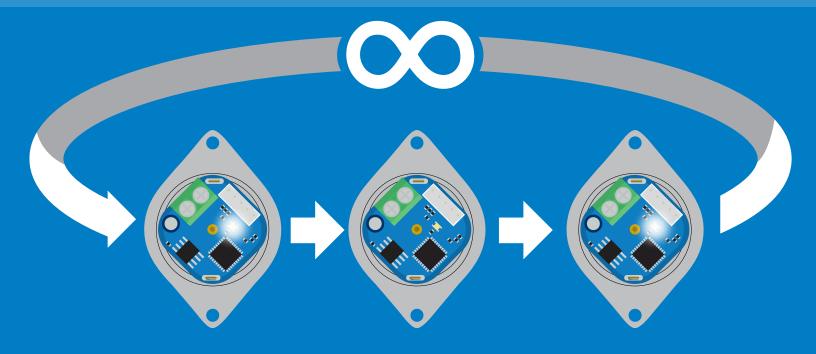
Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find

LED rapidly blinks white, used to help find device

Example


Response

Find

Single report mode

Command syntax

300ms processing delay

returns a single value showing dispensed volume

Example

Response

R

2.50 ASCII

Null

(If issued half way through dispensing 5ml)

5.00 **ASCII**

Null

(If issued once dispensing has stopped)

Continuous dispensing

Pump on/pump off

300ms processing delay

Command syntax

After running in continuous mode for 20 days the EZO-PMP™ will reset.

- dispense until the stop command is given **D**,*
- dispense in reverse until the stop command is given **D**,-*
- dispense status **D**,?

Example	Response
D,*	Pump will continuously run at ~105ml/min (with supplied tubing)
D,-*	Pump will continuously run in reverse at ~105ml/min (with supplied tubing)
D,?	1 ?D,10.00,1 0 Wait 300ms Dec ASCII Null

Response breakdown

Volume dispensing

Pump a specific volume

300ms processing delay

Command syntax

where [ml] is any volume in millimeters >= 0.5

D,[ml] dispense [this specific volume]

D,[-ml] dispense [in reverse this specific volume]

dispense status **D**,?

Example

Response

D,15

15 ml will be dispensed

D,-405

405 ml will be dispensed in reverse

D,?

?D,22.50,0

ASCII

Response breakdown

?D,22.50,0

last volume dispensed

pump off

Dose over time

Pump a fixed volume over a fixed time

Command syntax

300ms processing delay

D,[ml],[min] Dispense [this volume], [over this many minutes]

Example

Response

D,85,10

Dispense 85ml over 10 mins

Constant flow rate

Maintain a constant flow rate

Command syntax

After running in continuous mode for 20 days the EZO-PMP™ will reset.

DC,[ml/min], [min or *] DC,?

[maintain this rate], [for this much time] reports maximum possible flow rate

[ml/min] = a single number (int or float) representing the desired flow rate [min or *] = the number of minutes to run or (*) indefinitely A negative value for ml/min = reverse

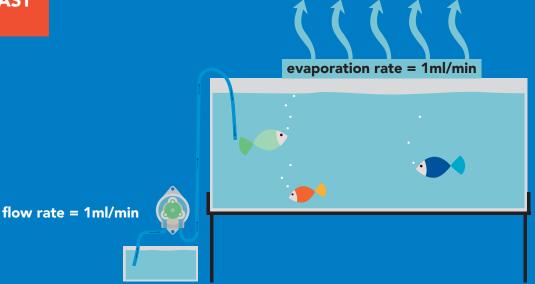
Example

Response

DC,25,40

Dispense 25ml per minute for 40 minutes

DC,?



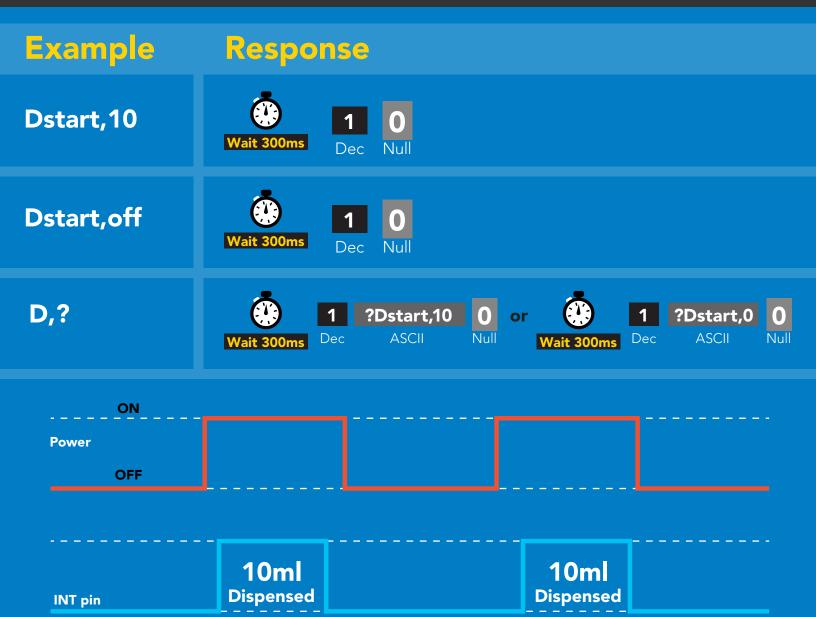
Dec

?maxrate,58.5 **ASCII**

The maximum flow rate is determined after calibration. If the flowrate entered is too fast the EZO-PMP™ will send an error.

Dispense at startup

Pump a specific volume at startup and then stop


Use this command to make a simple fixed-volume pump

Command syntax

300ms processing delay

Dstart,[ml] **Dstart,off** Dstart,?

dispense [this specific volume] at startup disables dispense at startup mode startup dispense status

Pause dispensing

Command syntax

300ms processing delay

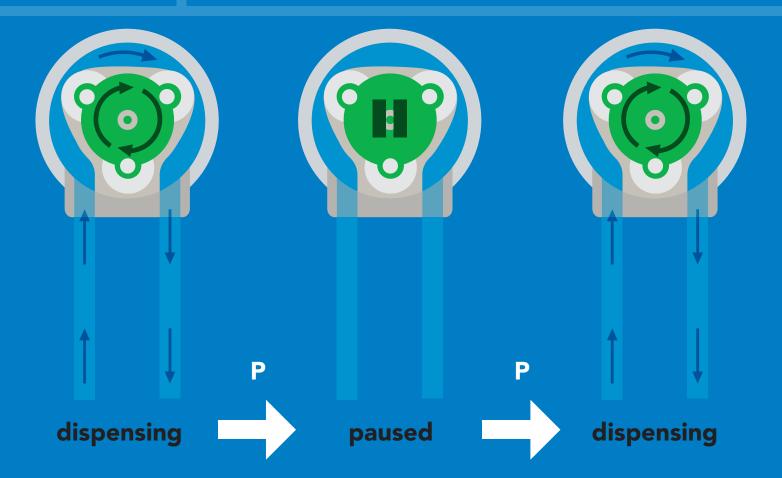
Issue the command again to resume dispensing

- pauses the pump during dispensing P
- pause status **P.?**

Example

Response

P



Stop dispensing

Command syntax

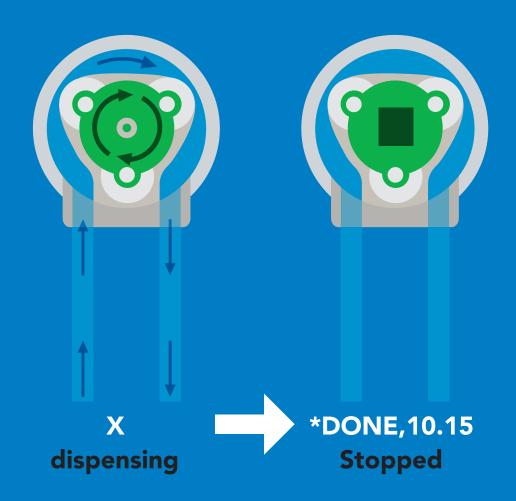
300ms processing delay

stop dispensing

Example

Response

X



v = volume dispensed

Total volume dispensed

Command syntax

300ms processing delay

TV,? shows total volume dispensed

ATV,? absolute value of the total volume dispensed

Clear clears the total dispensed volume

Example	Response
TV,?	1 ?TV,623.00 0 Wait 300ms Dec ASCII Null
ATV,?	1 ?ATV,434.50 0 Wait 300ms Dec ASCII Null
clear	Total now 0.00 Wait 300ms Dec Null

Calibration

Command syntax

Calibrate to the actual volume dispensed.

v = corrected volume Cal,v

delete calibration data Cal, clear

Cal,? device calibrated?

Example

Cal,24.01

Cal, clear

Cal,?

Response

Dec

ASCII

?Cal,3

ASCII

or

Dec

?Cal.0

Enable/disable parameters from output string

Command syntax

300ms processing delay

enable or disable output parameter O, [parameter],[1,0] enabled parameter? 0,?

Example	Response
O,V,1	Wait 300ms 1 O enable volume being pumped
O,TV,0	The state of the s
O,ATV,1	enable absolute volume pumped
0,?	1 ?,O,V,TV,ATV 0 if all three are enabled

Pump voltage

Command syntax

check pump voltage

Example

Response

PV,?

Response breakdown

?PV, 13.86

Pump input voltage

Device information

Command syntax

300ms processing delay

device information

Example

Response

i

Response breakdown

?i, PMP, Device **Firmware**

Reading device status

Command syntax

voltage at Vcc pin and reason for last restart

Example

Response

Status

?Status,P,5.038

ASCII

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

- powered off
- software reset S
- brown out
- watchdog W
- U unknown

Sleep mode/low power

Command syntax

enter sleep mode/low power Sleep

Send any character or command to awaken device.

Example

Response

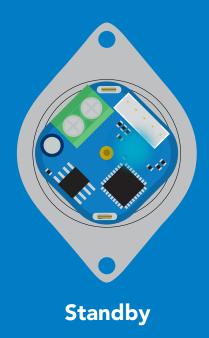
Sleep

no response

Do not read status byte after issuing sleep command.

Any command

wakes up device


5V

STANDBY SLEEP


13.4 mA $0.415 \, \text{mA}$

3.3V

12.4 mA $0.13 \, \text{mA}$

Sleep

Protocol lock

Command syntax

300ms processing delay

enable Plock Plock,1

Plock,0 disable Plock

Plock,? Plock on/off? Locks device to I²C mode.

Example

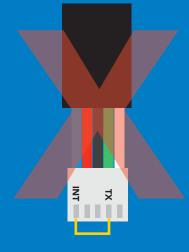
Response

Plock,1

default

Plock,0

Plock,?



Plock,1

Baud, 9600

cannot change to UART

I²C address change

Command syntax

sets I²C address and reboots into I²C mode I2C,n

Example

Response

I2C,101

device reboot


Warning!

Changing the I²C address will prevent communication between the circuit and the CPU until the CPU is updated with the new I²C address.

Default I²C address is 103 (0x67).

n = any number 1 - 127

12C,101

Factory reset

Command syntax

Factory reset will not take the device out of I²C mode.

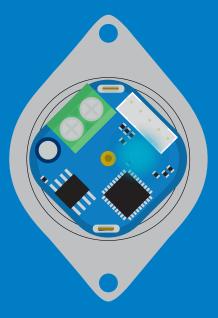
Factory enable factory reset

I²C address will not change

Example


Response

Factory

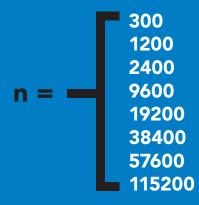

device reboot

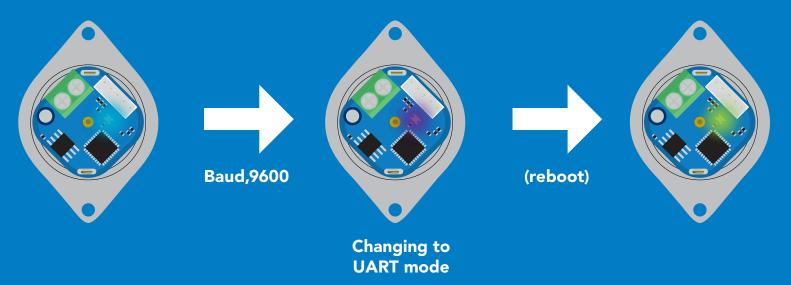
Clears calibration LED on Response codes enabled

Factory

Change to UART mode

Command syntax

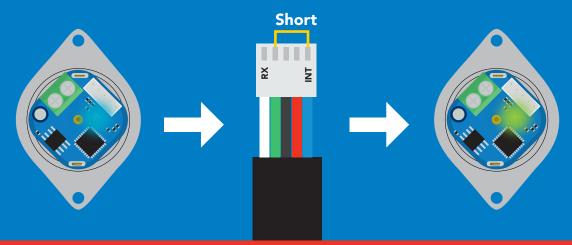

switch from I²C to UART Baud,n

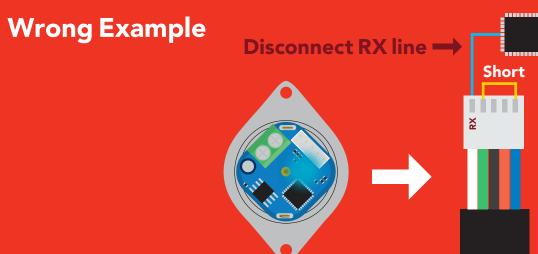

Example

Response

Baud, 9600

reboot in UART mode

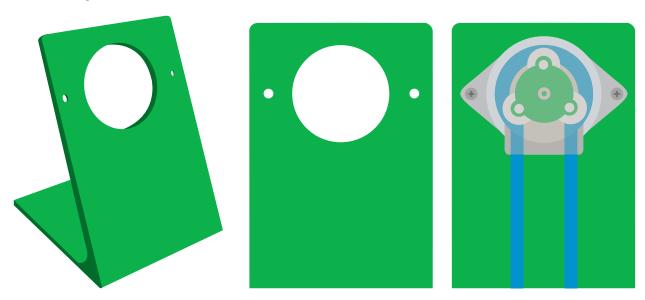


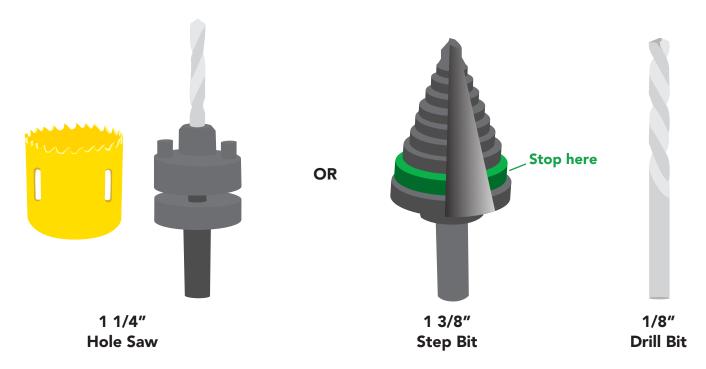


Manual switching to UART

- Make sure Plock is set to 0
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to INT
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example





Mounting the EZO-PMP™

There are a many different ways to mount the EZO-PMP™ Embedded Dosing Pump. If you have a 3D printer you can use the dosing pump stand we created, by clicking here. The dosing pump stand has been measured to perfectly fit the EZO-PMP™ and even has screw holes in place for you to help mount the dosing pump to the stand. Feel free to modify this stand design as needed.

However, if you would like to mount the EZO-PMP™ Embedded Dosing Pump into other materials, you will need the following tools:

Either are fine to make the larger hole.

Perfect for screw holes.

Datasheet change log

Datasheet V 2.5

Revised Total Volume Dispensed commands on pages 34 & 65.

Datasheet V 2.4

Added new dispensing mode:

"Dispense at startup" see pages 31 (UART) & 62 (I²C).

Datasheet V 2.3

Added motor life span on pg 4.

Datasheet V 2.2

Added page explaining the power supply needs of the EZO-PMP on pg 3.

Datasheet V 2.1

Moved Default state to pg 14.

Datasheet V 2.0

Revised response for the sleep command in UART mode on pg 40.

Datasheet V 1.9

Added section on viscosity on page 13.

Datasheet V 1.8

Added Find command on pages 22 & 53.

Datasheet V 1.7

Added information on pump tubing on pg 4.

Datasheet V 1.6

Added life span of tubing and cassette on pg 3.

Datasheet V 1.5

Added max input / output pressure info to pg 3 and pg 4.

Datasheet V 1.4

Revised definition of response codes on pg 47.

Datasheet change log

Datasheet V 1.3

Revised art and added pump head information on pg 11.

Datasheet V 1.2

Revised Plock pages to show default value.

Datasheet V 1.1

Added mounting information on pg 70.

Firmware updates

V1.0 – Initial release (April 28, 2017)

V1.01 – (May 9, 2017)

• Fixed bug where the circuit wakes up on I2C commands sent to other addresses

V1.02 – (July 28, 2017)

Fixed undervolt output typo

V1.03 – (June 26, 2020)

• Adds command dstart, which lets the pump automatically dispense a dose on startup

Warranty

Atlas Scientific™ Warranties the EZO-PMP™ Embedded Dosing Pump to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO-PMP[™] Embedded Dosing Pump(which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO-PMP™ Embedded Dosing Pump is inserted into a bread board, or shield. If the EZO-PMP™ Embedded Dosing Pump is being debugged in a bread board, the bread board must be devoid of other components. If the EZO-PMP™ Embedded Dosing Pump is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO-PMP™ Embedded Dosing Pump exclusively and output the EZO-PMP™ Embedded Dosing Pump data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO-PMP™ Embedded Dosing Pump warranty:

- Soldering any part of the EZO-PMP[™] Embedded Dosing Pump.
- Running any code, that does not exclusively drive the EZO-PMP™ Embedded Dosing Pump and output its data in a serial string.
- Embedding the EZO-PMP™ Embedded Dosing Pump into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific™ does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific™ cannot possibly warranty the EZO-PMP™ Embedded Dosing Pump, against the thousands of possible variables that may cause the EZO-PMP™ Embedded Dosing Pump to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific™ devices can be soldered into place, however you do so at your own risk.

Atlas Scientific™ is simply stating that once the device is being used in your application, Atlas Scientific can no longer take responsibility for the EZO-PMP™ Embedded Dosing Pumps continued operation. This is because that would be equivalent to Atlas Scientific™ taking responsibility over the correct operation of your entire device.